您访问的页面找不回来了!
返回首页- 您感兴趣的信息加载中...
另外一个问题就是认知领域,机器就会难很多了,尤其是跟语言相关的。语言是我们对世界的一种抽象认识,就像人类简史里讲到的。我们在森林里去找仙女,这样的事情是有概念有故事的,这个事情机器没有掌握。加上人类还有迁移学习能力,机器目前都不具有。
在这种局限性下,我们可以做一种简单的断言,在认知问题里面机器只能辅助人类,比如说当你写一部小说或者对话的时候,机器并不能独立工作,但在认知问题、感知问题里面机器可以独立上岗,就像图像和语音的处理。
我们的做法是以语言为核心,去探讨语言相关的感知和认知,感知是处理语音、图像,认知处理的是对话、翻译和问答。这个感知里面已经可以做到跟人的水平相同,但是在认知领域会非常难。
从优先顺序看最容易做的事情是机器翻译。即便如此,今天我们可以看到它跟人相比较起来也有一定的差距,尤其人觉得特别简单的事情机器并不一定处理很好,而人觉得复杂的问题机器可以做得很好。这与感知不一样。在感知方面,机器可以全面地比人做的好,机器不精准的地方人也做不好。而认知世界里,机器和人好像是不同类型的人。
感知里面,我们做了语音识别。搜狗是中国今天ToC领域语音识别量最大的引擎。因为我们拥有中国最大的输入法,每天有超过6亿次语音识别请求,包括语音修改,目的就是以语言为核心使得人跟人通过感知能进行更好的沟通。
之后,我们觉得这件事情不代表技术前沿,我们又做唇语的识别,之前是用声音转化为文字,现在我们可以做到用嘴形变化转化为文字,我们是最早公开演示的系统,而且在特定场景的识别率已经高达到90%。
最近,我们刚刚发表了一篇论文,关于机器和人语建模,在嘈杂环境能大大提升人语识别的准确度,在我们北京的实验室和展厅里面可以体验到这样的技术。
记者/闫妍 王小川是中国AI领跑者之一。 2017年,他和搜狗一起迎来了自己的高光时刻。身披的“中概股人工智能第一股”的外衣,以搜索引擎、输入法、浏览器起家的搜狗,正在围绕人工智尝试着更多的可能性