我想讲的就是,人的智能和机器的智能中间有一个鸿沟,人工智能的基础是可以度量、可以描述、可以传递的数据,满足这几个条件数据在我们手里才能训练。
如果我们去看一看,什么东西是可以度量、传递,哪些东西不可以。首先,在生物科学上,有一系列基本的人的生命感知,由生物科学已经决定了这些东西是无法度量的。我这里只举几个例子,如嗅觉、味觉、性欲,这些东西是无法度量的。无法度量的东西,无论你造出来的机器计算能力有多强,算法有多么优秀,因为它没有感知,你造不出来一个机器人来代替品酒师品酒,因为生物科学告诉你这个东西是测不出来的,你也不能在网上传递嗅觉、味觉。
再一点,人的心理感知也是无法度量的。喜悦、厌烦、痛苦、抑郁、思念、怀旧、贪婪、野心等,这些心理的内容是怎么演变的、为什么每个人是不一样的等,这些东西都是机器达不到的,因为数字是没有的。
看一下现在对机器人、人工智能的社会训练是怎么做出来的。当不存在这些原始数据的时候,它实际用的是刻画某一些软数据的其他参数,比如说文字、观察某个行为的录像,然后用机器识别录出来的各种各样的行为,用这个来学习。今天我们看到机器人了不起,指的都是这个方法。但是这里面有什么问题呢?第一个问题就是片面的,第二个问题是静态的,静态的意思就是你看到的是过去,你可不知道将来怎么样。福特不做市场调查,因为当没有汽车的时候,你无法知道消费者的反应;当没有手机的时候,你也无法知道人们对手机的反应,没人知道,因为人们没有。
因此,深度学习的人工智能它最终不涉及学习人的智能的原始基础要素。原因就是因为它缺少大量人的基本感知,这样机器不可能通过学习来产生和人相似的效应反射。任何一个人工智能的机器设备或者机器人,最重要的是自己的效应反射,即它的目的是什么,它活在世上干什么,但这个东西是不可能学来的,学不来的原因是缺少原始基础要素,因此只能是由设定它的人分配给它。
经济学家从来不知道人真正的效应函数是什么,我们永远不知道,因此,人分配给机器的效应函数没有可能是人的普遍函数,只能是在一个狭窄范围内定义的、静态的,即可预见的。因此从广义上讲,任何人工智能设备或者机器人的目标函数,不是也不可能代替真的人的自身目标。这个概念其实早在西蒙获得诺贝尔奖的时候就提出了,即“有限的理性”,这个概念一直影响到今天,而且是经济学发展最前沿的东西。“有限的理性”是当初讨论计划、规划的时候认识到的,我们永远受这个概念的限制。今天我们讨论机器人,你分配给机器人一个效应函数,它一定不会比你更好。