您访问的页面找不回来了!
返回首页- 您感兴趣的信息加载中...
改变之三:人工智能要适应任何部署场景
混合云已经成为企业采用云服务的主要模式,当前的AI主要在云,少量在边缘,与企业的业务环境的结合有待进一步深入。
我们认为,未来AI将无处不在,要能够部署在任何场景,并确保用户隐私得到尊准和保护。
改变之四:更高效更安全的算法
算法是推动AI发展的另一个主要动力,但目前运用的主要算法多诞生于1980年代。随着AI的广泛普及,这些算法的不足愈发明显。
我们认为,未来的算法,要能够基于更少的数据需求,即数据高效。也要能够基于更低的算力和能耗,即能耗高效。同时要解决自身的安全问题,并实现可解释…等等,这都是AI全面发展的重要技术基础。
改变之五:更高的自动化水平
今天的人工智能,自身还需要大量的人工,特别是在数据标注环节,今天甚至还诞生了一个新的职业叫“数据标注师”。有人调侃说,今天的人工智能,是没有“人工”就没有“智能”。
我们认为,应该大大提升AI自身的自动化水平,比如在数据标注、数据获取,特征提取,模型设计和训练等环节,要实现自动化或半自动化。
改变之六:模型要面向实际应用
2018年6月,伯克利大学的助理教授 Benjamin 等发表了一篇题目奇怪的论文--《CIFAR-10分类器能否泛化到CIFAR-10?》
该论文指出,在CIFAR-10分类器上测试准确度出色的模型算法,却在作者创建的与CIFAR-10非常接近的另一测试集上出现了偏差,分类识别准确率下降了5-15个百分点不等。这也就意味着,这个模型算法的可用度大幅度下降。
由此,可见当前很多优秀的模型算法,更多的是“考试”优秀,还未达到“工作”优秀。
我们认为,未来的模型必须实现工业级的优秀,即满足工业生产的需要,而不仅仅满足于测试集上“考试”优秀。
美国之所以忌惮华为与多个因素有关,其中最突出的一点是华为走出了一条中国特色企业的全球化发展之路。事实上,美国也明白华为并没有得到什么特殊待遇,但正是这一点让它变得格外可怕。
编者按:近段时间,手机市场风起云涌,苹果推出新款手机,因为价格等原因在国内并没有叫响,联想集团节前推出新款手机杀入市场,加上原有的华为等知名品牌,市场格局如何演绎,值得持续关注。