您访问的页面找不回来了!
返回首页- 您感兴趣的信息加载中...
专家表示,以肺结节CT筛查为例,目前业内对肺结节、糖网病检查等场景的医疗人工智能产品诊断准确率普遍很高,但企业在训练自己的模型时通常有自己的数据库,各自的算法都是按照自己的数据进行训练,然后以自己的数据来验证准确性。
第二,在人工智能输入的数据和其输出的答案之间,通常存在着无法洞悉的“隐层”,它被称为“黑箱”,“黑箱”存在的后果就是难以判断人工智能是否出错。“如果能让医生看到计算机是怎么想的、怎么得出结论的,就能让人类更相信计算机,让人类更加对它放心。”广州市妇女儿童医疗中心教授张康说。
路径尚待明确
从监管层面来看,人工智能刚刚应用于医疗健康领域,一些监管政策还有待明确,人才积累仍显不足,而可持续的商业模式也亟待建立。
一是准入政策不明朗。“药品和器械在国家的监管层面有很详细的规定,但是医疗人工智能产品是新产品,详细的标准还在制定中。”上海长征医院影像医学与核医学科主任刘士远说,目前已经有九项医学人工智能产品向国家药品监督管理局申报三类器械,但没有一个被批准,用什么样的标准和规范也仍在讨论当中。
2017年国家药品监督管理总局发布的《医疗器械分类目录》中的分类规定,若诊断软件通过算法提供诊断建议,仅有辅助诊断功能不直接给出诊断结论,则按照二类医疗器械申报认证;如果对病变部位进行自动识别并提供明确诊断提示,则必须按照第三类医疗器械进行临床验证管理。业内人士介绍,目前我国有部分企业已经申请了二类证,但申报三类器械的产品都尚未得到认证。
二是人才缺口大。据业内统计,目前我国人工智能行业的从业人员不足5万人,每年通过高校培养出来的技术人员也不足2000人,而在人工智能行业从业者中,美国拥有10年以上工作经验的人才占比接近50%,我国只有不到25%。
不仅如此,夏慧敏认为,人工智能从实验室走到临床、更好为临床服务,最重要的是能够找到医疗中的痛点和急需解决的问题,当前很多医疗人工智能团队都是算法工程师在主导,既懂医学、又懂计算机的复合型人才在中国相对紧缺。
三是可持续的商业模式亟待建立。金蝶医疗软件科技有限公司总经理尹治国表示,医疗人工智能产品期望能以销售软件的形式让医院付费,以建立可持续的商业模式,但是目前来说直接向消费者收费并不现实,如何构建商业模式形成商业闭环,业界仍在探索。
IBM沃森健康部门因盈利艰难于近期裁员数百人。近年来,IBM将认知计算确定为转型方向,其中沃森是其最重要的人工智能部门,投入高达数十亿美元。 IBM在人工智能领域的窘境并非个例