没有任何一个经济学家知道世界上每一个人真实的目的是什么,是什么东西影响你?抽象来说你的目的是为了幸福、为了愉快,但是什么东西影响了你的幸福、你的愉快,没有任何一个经济学知道,这就是为什么“市场”重要。下面的问题就是如果有了大数据,有了这么聪明的人工智能,有没有可能通过收集无数的巨大量大数据把它算出来、把它模拟出来,有没有可能?
下面我们就要把人的智能和人造的智能,分别看一下。首先,人的智能是产生于人的生理、心里的感知以及人收集的信息。1950年代,西蒙教授讨论人工智能的时候,就已经区分出来了“识别”的概念,这也是今天人工智能核心的概念。早在那个时代就已经有了所谓
冷识别和热识别区别的辩论。什么是冷识别和热识别?冷识别是机器能够识别的,热识别是人带着感情的识别,人带着感情的识别机器是学不来的,这是一点。
再一点就是今天讨论人工智能也好、讨论相关的激励机制问题也好,有一个重要基本概念——硬数据和软数据,硬数据就是前面我提到过的,所有可以度量可以传递的数据;但是,永远和硬数据对应的还有一部分是软数据,软数据是没有办法用传感器或移动设备度量的,不能度量就无法传递、无法处理。所以当我们讨论人工智能是基于大数据训练出来的时候,热识别和软数据的问题从技术上决定都不包含其中,它连基础都没有上哪去学呢,这就是为什么机器不是人。
再有一点,人的智能里边有个非常重要的基本部分就是直觉。什么是直觉?直觉是基于人对于硬数据和软数据、冷识别和热识别综合在一起产生出来的人的一种高度的抽象的跳跃性的反映。这种直觉,不但它依赖的数据是不可度量、不可传递、无法机器处理的,而且产生的直觉本身也是人无法描述的,这就是为什么师傅带徒弟不一定带得出来,在教学的时候,好的教授之所以好,因为好的教授有更多的好的直觉,但是这个直觉传递不过去,你已经想出来了都传递不过去,更不要说你的学生会不会学出来,这个学生能不能产生直觉是老师没有办法,天生的。
人的智能与机器的智能的差别
我想讲的就是,人的智能和机器的智能中间有一个鸿沟,人工智能的基础是可以度量、可以描述、可以传递的数据,满足这几个条件数据在我们手里才能训练。