您访问的页面找不回来了!
返回首页- 您感兴趣的信息加载中...
通过实时获得信息,销售团队就可以与客户展开谈判。也许其中一个订单项在规定的日期内无法交付,但其他订单项是可以保证的。“这是一个完全不同的过程,”他说。
但预测交付不仅仅是能够拉动制造和出货时间表。凭借着智能供应链管理技术,企业还可以查看历史运输时间和制造细节,并将其与外部数据源(如天气预报等)相结合使用。
Zweben表示:“你一开始可以先承诺之前预测好的库存量,而不是计划好的库存量。而且你要根据可能发生的情况——而不是应该会发生的情况——向客户给出承诺。”
供应链难题
Infinera在部署这项技术方面具有优势,因为Infinera有垂直整合的业务模式。对于其他公司来说,将人工智能技术运用于供应链是一个很棘手的过程。
OpenText 是一家位于美国安大略省的企业信息管理供应商,该公司产品营销总监Mark Morley说:“这看起来似乎是最基本的问题,但事实是,业务合作伙伴之间交换的信息中仍然有超过50%是通过传真、电子邮件或电话传输的。”
因此,物流并不是企业考虑部署人工智能技术时首先想到的领域。
根据Forrester最近对全球决策者的调查,在SCM中使用人工智能要远远市场营销、产品管理和客户支持。只有13%的公司说,物流是他们评估投资和采用人工智能系统的主要领域。
供应链通常涉及大量外部合作伙伴,其中一些可能技术比较落后,此外还存在数据质量和互操作性等问题,专家说。
Forrester Research副总裁兼首席分析师Boris Evelson表示,在将高级分析和机器学习算法运用于供应链数据之前,企业必须首先收集数据,也就是从制造商、分销商、经销商和供应商那里收集数据。
“从所有这些来源获取数据,是一个巨大挑战,”他说。一旦收集到数据,这些数据也并不总马上就可以使用的形式。“供应商可能有某个细分层面的数据,而分销商可能会有其他层面的数据。供应商可能有单个产品的数据,但分销商可能只有基于容器的数据。”
但这并不是说企业就没有在尝试解决这个问题。
埃森哲应用智能总监Frank Meerkamp说:“在和我们交流的一些财富400强企业中,每个客户都对理解、探索和证明概念感兴趣。人工智能运用于供应链管理方面是有很多机会的。”