当前位置:经济频道首页 > 产经 > 正文

“暗黑版”AI现身引忧虑 我们需要怎样的人工智能?

2018-07-09 09:20:03    科技日报  参与评论()人

近日,麻省理工学院媒体实验室出品了一个“暗黑版AI”,再次将人工智能的黑箱隐忧这个经久不衰的话题送上热门。据报道,实验室的三人团队联手创造了一个叫诺曼(Norman)的人工智能,与希区柯克经典电影《惊魂记》中的变态旅馆老板诺曼·贝兹同名。

名如其人。诺曼会以负面想法来理解它看到的图片。例如,一张在一般AI看来只是“树枝上的一群鸟”的普通图片,在诺曼眼中却是“一名男子触电致死”。

团队希望通过诺曼的表现提醒世人:用来教导或训练机器学习算法的数据,会对AI的行为造成显著影响。AI会成为什么样,有时人类可能束手无策。

  TA们的偏见就是人类的偏见

诺曼们从哪来?答案首先藏在数据里。

“人工智能识别出的结果不是凭空而来,是大量训练的结果。如果要训练AI某一方面的能力,比如下棋,就需要收集、清洗、标记大量数据供机器学习。如果用于训练的数据不够多,就会造成AI学习的不充分,导致其识别结果的失误。”中科院自动化研究所研究员王金桥对科技日报记者表示。数据本身的分布特性,如偏差甚至偏见,也会被机器“有样学样”。针对诺曼的表现,创造它的实验室也指出,“当人们谈论人工智能算法存在偏差和不公平时,罪魁祸首往往不是算法本身,而是带有偏差、偏见的数据。因为当前的深度学习方法依赖大量的训练样本,网络识别的特性是由样本本身的特性所决定。尽管在训练模型时使用同样的方法,但使用了错误或正确的数据集,就会在图像中看到非常不一样的东西”。

另外是算法本身的影响。“这可能是无法完全避免的,由深度学习算法本身的缺陷决定,它存在内在对抗性。”王金桥表示,目前最流行的神经网络不同于人脑的生物计算,模型由数据驱动,和人类的认知不具有一致性。基于深度学习的框架,必须通过当前训练数据拟合到目标函数。在这个框架之下,如果机器要识别狗,它会通过狗的眼睛、鼻子、耳朵等局部特征进行可视化识别,而这些可视化特征却能给想利用深度学习漏洞的人机会,后者可以通过伪造数据来欺骗机器。

相关报道:

    404 提示信息
    404

    您访问的页面找不回来了!

    返回首页
      您感兴趣的信息加载中...

    相关新闻